
So You Want To Analyze Malware?
Tools, Techniques, and Mindset

Introduction
Who, What, Why?

Introduction

•  Me – Wes Brown
–  Software and Systems Hacker

•  Fond of Lisp-based and Functional Languages
•  Developed Lisp dialect with Scott Dunlop

–  Mosquito Lisp
–  Evolved into Wasp Lisp

–  Security Researcher and Malware Analyst
•  MOSREF – uses Mosquito Lisp for a remote command and

execution framework
•  Malware Analyst – analyzed thousands of samples

–  Security Consultant
•  Penetration Testing
•  Code Review
•  SDL

–  IOActive

Agenda

•  Motivations behind Malware Analysis
•  Mindset behind Malware and Analysis
•  Trends in Malware
•  Building a Malware Lab
•  Tools for Malware Analysis
•  Analysis Walkthrough

Motivations behind Malware and Analysis

•  Why Analyze Malware?
–  Better understanding of threats to protect network

•  Defender
–  To write software that detects malware

•  Tools for Defender
–  Aesthetic admiration

•  Admiration of Techniques
–  Writing a better mousetrap

•  Financial Gain

•  Why Malware?
–  Financial gain

•  Follow the money
–  Political agenda
–  Used to be for the challenge and pranks

What Makes A Good Malware Analyst?

•  Mindset
–  Meticulous data collection
–  Logical processes
–  Thinks outside the box
–  Tenacious

•  Technical
–  Good systems understanding
–  Good understanding of programming
–  Some reverse engineering skills

•  Attitude
–  Ties into motivations discussed earlier

Trends in Malware
Past, Present, and Future

Attack Vectors
•  In the Ancient Past

–  Viruses via floppy disks
–  Downloaded via FTP or BBS’es

•  Past
–  Systems level
–  Exploitation of remote services, worms
–  System protections an NAT/Firewalls made this difficult

•  Now
–  System is only as strong as its weakest link

Human Factor

•  In the past, attacks were mainly technical.
–  Attackers searched for network or systems level vulnerabilities.
–  Automatic exploitation and spread.
–  Humans not involved in the attack cycle.

•  In the present, exploit the human.
–  Spam email
–  Compromise a legitimate site.

•  “Drive by” site
•  Human visits compromised site, is compromised.

–  Advertising attacks
•  Especially at shadier sites such as P2P trackers.

–  Goal is to get the initial injection vector in.
•  Once vector is in, payload can be sent, and network is compromised.

Attacking through Social Networks

•  Social Networks
–  Flickr
–  Facebook
–  Twitter
–  Myspace
–  Etc

•  File sharing
–  Torrents
–  Warez
–  P2P

•  Highly connected network
•  Massive information sharing
•  Rich media content

Internationalization of Malware

•  Formerly, English-targeted samples.
–  Easy to conduct a strings search on.

•  Cultural assumptions of what Malware is.
–  Varies from region to region.
–  One man’s anti-cheating toolkit is another man’s rootkit.

•  Punkbuster
•  Korean and Chinese games

•  What should it be flagged at?
–  Suspicious?
–  White list?
–  Malware?

Current Attack Lifecycle

•  Initial payload is small
•  Initial checks

–  Mutex, OS Version, Keyboard, location
–  Conficker A didn’t infect systems with Ukrainian Keyboard

•  Payload is downloaded
•  Backdoor/trojan/infect
•  Contacts command and control server for tasks
•  May fall back to secondary C&C
•  Dynamically generate rendezvous point

•  Conficker quietly spreads internally and waits before phoning
home

Current Obfuscation Techniques
Staying on the System

Obfuscation

•  Obfuscation used to confuse analysis
–  Antivirus signatures
–  Static analysis – decompilers
–  Dynamic analysis – tracing, debugging, inspection

•  Obfuscation used legitimately for DRM systems
–  Hide important logic to slow reverse engineering

•  Race to Zero Competition
–  Highlighted ineffectiveness of AV

Basic Techniques

•  Polymorphism and Packers
–  UPX, Armadillo or custom packer

•  Simple Debugger checks
–  IsDebuggerPresent()

•  Jumping into data/ middle of instructions
•  Encoding strings/values
•  Manipulating imports
•  Corrupting PE Header

–  Bad LoaderFlags
–  Bad NumberOfRvaAndSizes

•  Section Header Stuff
–  Enormous bogus sections
–  Overlapping sections

Basic Techniques (cont.)

•  Junk code
–  Spaghetti assembly

•  SEH
–  Exception handler patches memory
–  Access to application context structure -> Erase Hardware debug

Registers

Advanced Techniques

•  Metamorphic malware
•  Custom virtual machines

–  Polymorphic instruction sets
•  Encryption

–  Corrupting PE Header, use corrupt data as key
•  Instruction Timing

–  Model Specific Register (MSR), counts clock cycles
–  RDTSC instruction, moves timestamp to EDX and EAX

Advanced Techniques (cont.)

•  Debugging register tricks
–  Trampolines pass shared stack via debug registers

•  Breakpoint detection
–  Before calling API, check first few instructions breakpoints

•  VMWare detection
–  VMWare Tools, Network card, hidden APIs

•  Random note: Malicious JavaScript can only be fetched once

Custom Virtual Machines

•  Purpose is to complicate static analysis by adding additional
layer of translation

•  P-Code machine (Pseudo-code)
•  Create a software CPU
•  Soft registers and pseudo language
•  Mapping between pseudo language and real instructions

–  Mapping happens at runtime
•  Makes static analysis very difficult
•  Must run the system and step through things
•  Make your Vmcode self modifying
•  Really evil = Instruction set mapping changes after each

instruction

Building a Malware Lab
Tools for Analysis

Malware Lab

•  Virtualization Platform
–  Multi-core CPUs are cheap
–  Windows images can be reverted in seconds.
–  Can run dozens of Windows images.
–  Easy to audit

•  Use Copy on Write disk images

•  Must not be on any network but its own.
–  Airgapped.
–  Prevents inadverent contamination and information leakage.

•  Dynamic Internet Connection
–  Preferrably a consumer-level connection.
–  Reissue new IP addresses via DHCP lease.
–  Prevents blacklists against

Virtualization Platform

•  VMware
–  Why Vmware?

•  Stable.
•  Well-known.
•  Tools to analyze Vmware suspend images
•  Vmware ESXi is free, bare metal virtualization.

–  Fatal Flaw
•  Lowest common denominator.
•  Malware actively detects Vmware.

–  Virtualization drivers detectable.
–  Easy to detect.

»  Put value 10 (0x0a) in the ECX register, and put 0x564D5868 in the
EAX register. Read a dword from 0x5658.

–  Exploits to break out of Vmware sandbox now.

–  Recommend strongly against using Vmware for a Malware Lab

Virtualization Platform (cont’d)

•  Xensource
–  Payware

•  Now has a free product to compete with Vmware ESXi
•  Yay competition!

–  Nicely packaged bare-metal virtualizer.
–  Good performance.
–  Excellent Copy-on-Write support

•  Qemu
–  Roll your own virtualization platform
–  OpenSource
–  Slower than the others.

Neat Virtualization Tricks

•  Serial Debugging
–  Debugger and Debugee VMs with virtual serial connection.
–  Very handy for kernel debugging with tools such as WinDBG.

•  Copy on Write
–  Original VM disk image is unmodified.
–  All changes are made to a separate file.
–  Can mount delta images and examine differences to see what

malware changed.
•  Memory Image

–  State of memory can be snapshotted while malware is run, and
then disassembled and debugged.

•  Fast reversion of images
–  Useful for analyzing thousands of samples in a day.

Database (aka, store everything!)

•  Database
–  Needed to store data from automatic and manual analysis.
–  Malware analysis is far more useful with a corpus to compare

against.
–  The more data we have on characteristics, the more we are able

to do a determination of whether it is malware.
–  Reverse engineering is expensive in terms of man-power to do.
–  Identify characteristics and understand malware to allocate

reverse engineering where it is worthwhile to.
•  Corpus

–  Store actual malware sample.
–  Store all known characteristics.
–  Store network traces.
–  Store static forensics.

Obtaining Malware to Analyze

•  Be an anti-virus or anti-malware software vendor.
–  Set up your software agent to automatically send back unknown

samples.
–  Thousands of samples a day!

•  Join an existing antimalware intelligence group.
–  Honeynet Project
–  Sandnet

•  Build your own honeynet.
–  Collect malware samples from exploits.

•  Beg, borrow, steal.
–  Obtain a feed from someone.
–  Offer a feed in return.

Additional Tools

•  Debuggers
–  WinDBG
–  IDA
–  Ollydbg

•  Tracers
–  Process Monitor (regmon, filemon)
–  Detours
–  Third party: apimonitor, strace

•  Unpackers
–  PeID
–  Import rebuilders

Analysis Walkthrough
Dynamic and Static

Analysis Walkthrough

•  Version of Sality family
•  From the network logs we know some behavior

–  Slowly spreads internally
–  Outbound connections on high number ports
–  HTTP requests
–  Not detected by antivirus

•  Initial samples
–  Four executables
–  Random filenames starting with “win”
–  Same size, different checksums

Process Monitor

•  External behavior highlights what to look for during static
analysis
–  Ex: strings of URLs, registry keys, file names

•  A lot of what you’ll see is general noise as application loads
libraries,reads registry keys, starts threads, accesses files

•  Focus on RegSetValue for fast info

Process Monitor Video

RegSetValue Standard Stuff

RegSetValue Standard Stuff

•  Adds self to Firewall Policy Authorized Applications List
•  GlobalUserOffline -> 0

–  Switches to online if was “Work Offline” mode
•  EnableLUA -> 0

–  Turn off User Access Control for Administrator

RegSetValue Interesting Stuff

•  HKCU\Software\Administrator914\-993627007\2022726022
•  Size 726
•  Value:

0500687474703A2F2F61736A6469776575723837777364636
E622E696E666F2F74616E67612E67696600687474703A2F2
F7065646D656F3232326E622E696E666F2F74616E67612E6
7696600687474703A2F2F676F6E646F6C697A6F313834383
32E696E666F2F74616E67612E67696600687474703A2F2F7
46563686E6963616E2E772E696E74657269612E706C2F746
16E67612E67696600687474703A2F2F707A726B2E72752F6
96D672F6C6F676F342E676966

RegSetValue Interesting Stuff

•  Decodes to:

http://asjdiweur87wsdcnb.info/tanga.gif
http://pedmeo222nb.info/tanga.gif
http://gondolizo18483.info/tanga.gif
http://technican.w.interia.pl/tanga.gif
http://pzrk.ru/img/logo4.gif

RegSetValue Interesting Stuff 2

Kill off the malware process and a little while later….

Thread Injection

•  You can actually see the thread injection

No more safeboot!

Some other Things

•  See the Libraries its loading

•  Writes System.ini
•  Thread heavy >100 threads in 1 minute

Static Analysis and Debugging

•  More difficult than simple runtime trace analysis
•  Malware is usually packed
•  Uses anti-debugging techniques

–  Debugger checks
–  Import table stuff
–  SEH
–  Timing

•  Unpack
–  Automated tools, PeID
–  Manually with memdumper

•  Fix Imports
•  Use Debugger with anti-anti-debugging features

Unpacking

•  PEiD Fails
•  At least we know it’s UPX (probably)

Manual unpacking

•  Entry point at 0x425F30:

•  PUSHAD pushes all registers onto stack
•  PUSHAD & POPAD usually surround the packer logic

Manual Unpacking Cont.

•  Step the PUSHAD
•  Set a hardware access breakpoint on the location of the stack

pointer
•  Pray
•  Continue

•  Normally you note where its jumping two and dump the
process

•  But its jumping back to the same entry point!

Manual Unpacking Cont.

•  Follow the jump

•  Same 425F30
•  Same PUSHAD
•  Different Code
•  Packed twice!

Manual Unpacking Cont.

•  At the second POPAD

•  Looks much better
•  Short loop to zero out stack (?)
•  Jump to 4089B0
•  Dump to new PE file

Dumping

•  Used OllyDump to rebuild an unpacked version of the PE file

Fixing imports

Assembly Stuff

•  Mutex

•  Threads

•  Sockets

Strings

Analysis Conclusion

•  A lot can be learned from simple tracing
•  Anti-debugging tricks can slow down reverser significantly

–  Small effort for malware writer
–  Large effort for reverser

•  Network analysis
–  Sniff traffic with protocol analyzer
–  Spoof servers to feed same payload
–  Now trace the virus

•  Create wrappers to call functions in the malcode
–  Encrypt/decrypt
–  Rendezvous point generation function

Overall Conclusion

•  Not as bad as it could be
•  Simple tracing/monitoring can give lots of information
•  Static analysis of Malware can also yield many clues.
•  Storing all bits of data and characteristics in a database can

yield large dividends.
•  Trend is toward decentralized botnets (P2P)
•  New coordination efforts in botnet takedowns

Wes Brown
wbrown@ioactive.com

Thank You!

